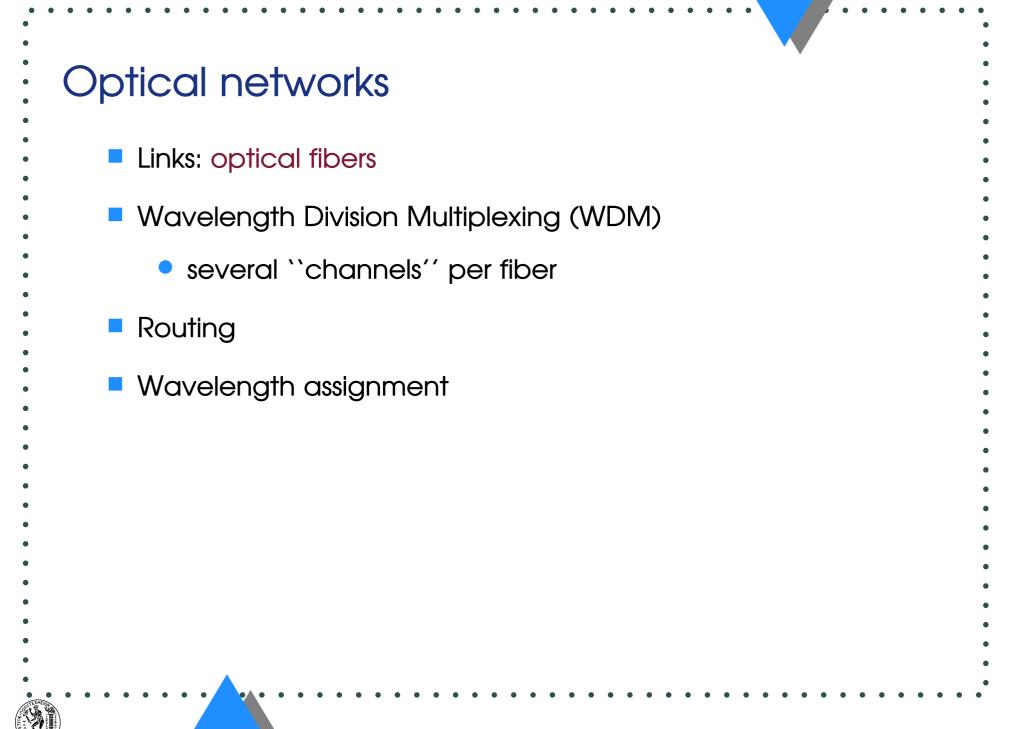
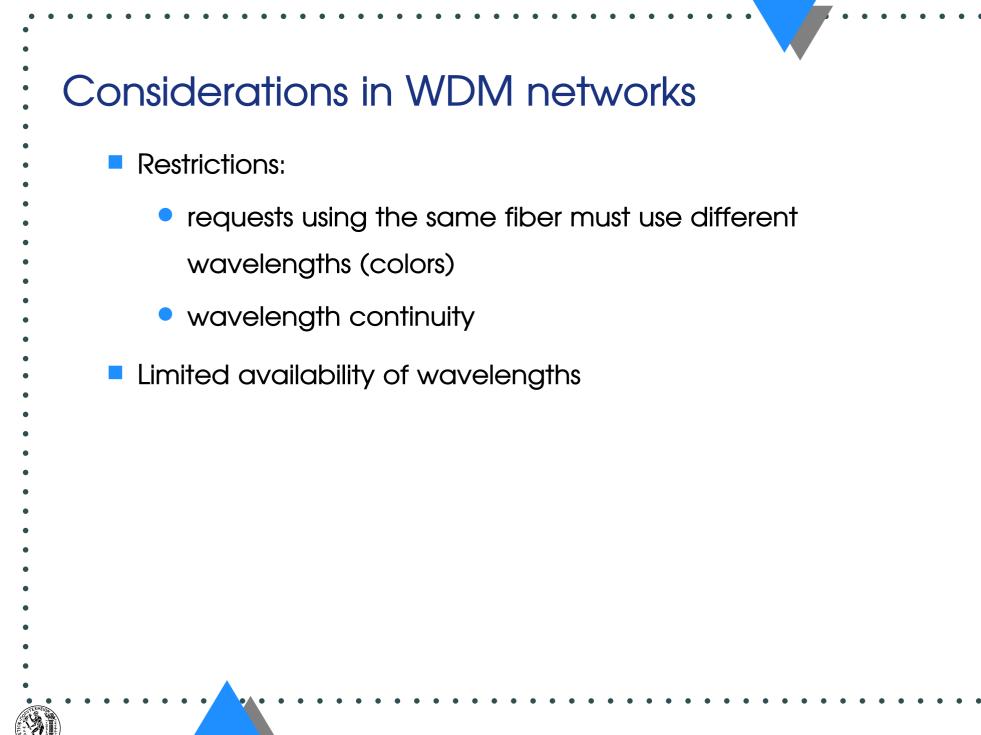
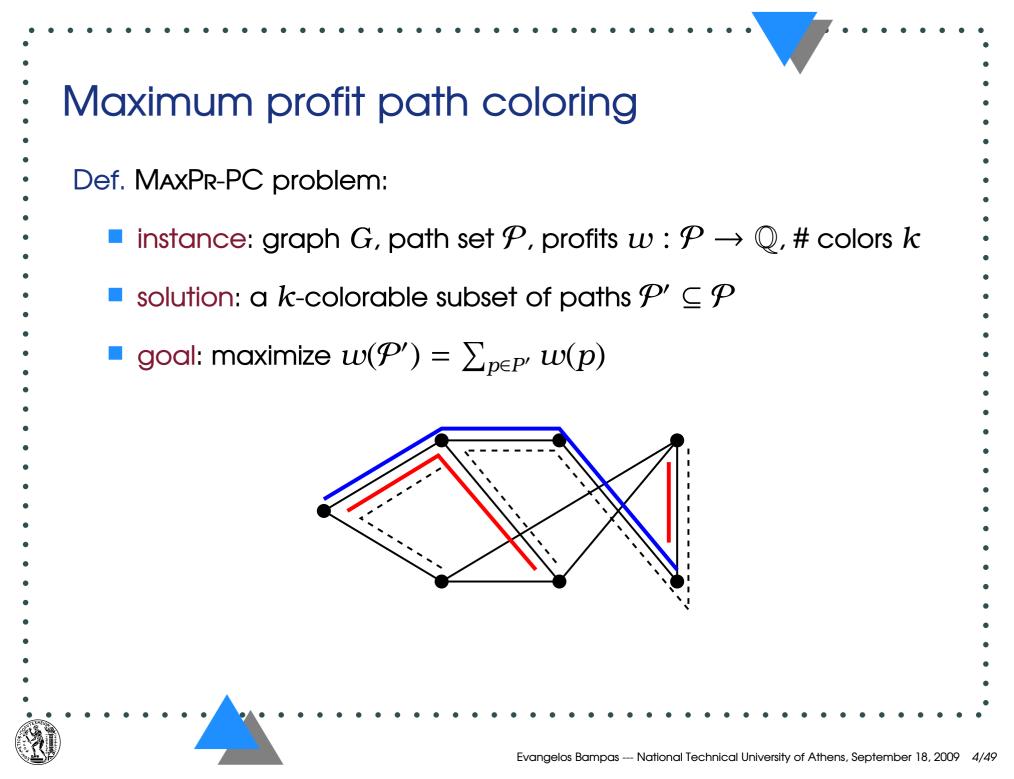
• • • • • • • • • • • • • • • • • • •
Routing and wavelength assignment
in optical networks
Evangelos Bampas
National Technical University of Athens
Evangelos Bampas National Technical University of Athens, September 18, 2009 1/49

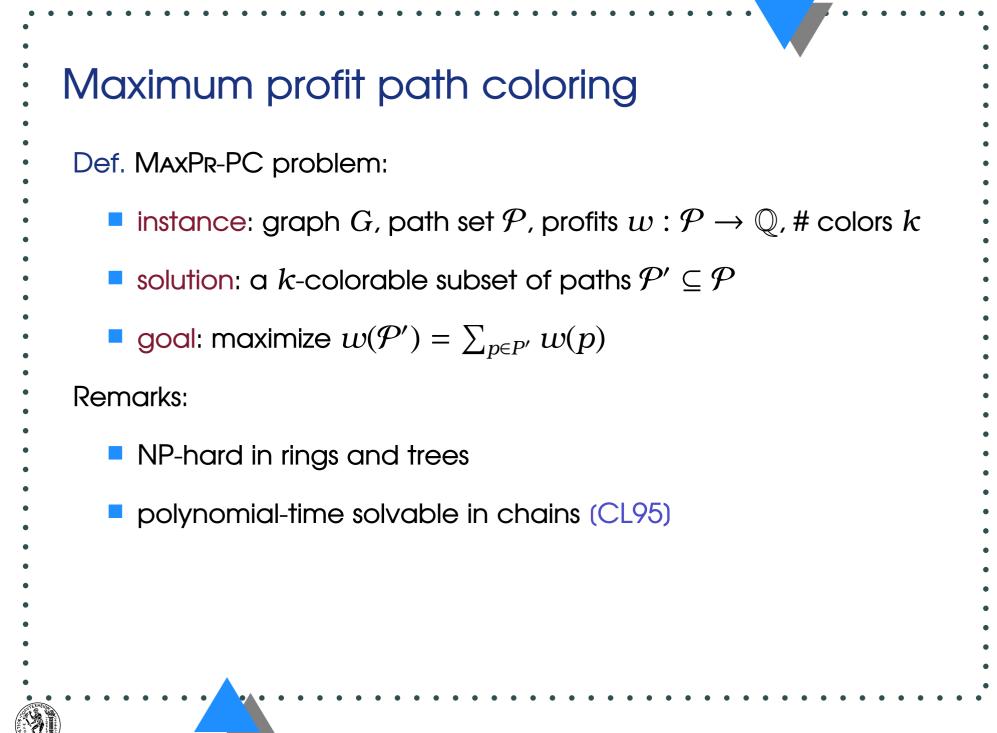






Outline of presentation

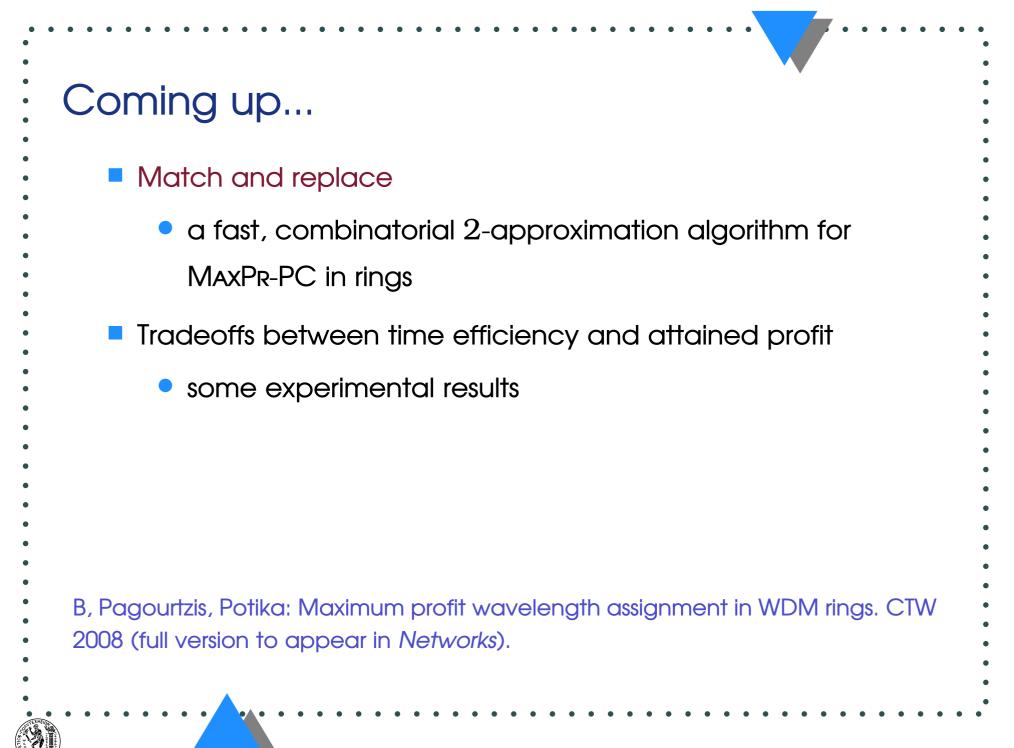
- Algorithms for MaxPR-PC in rings and experimental evaluation
- Non-cooperative routing and wavelength assignment in multifiber optical networks
- A neat application of path coloring to a transportation problem
- Conclusions



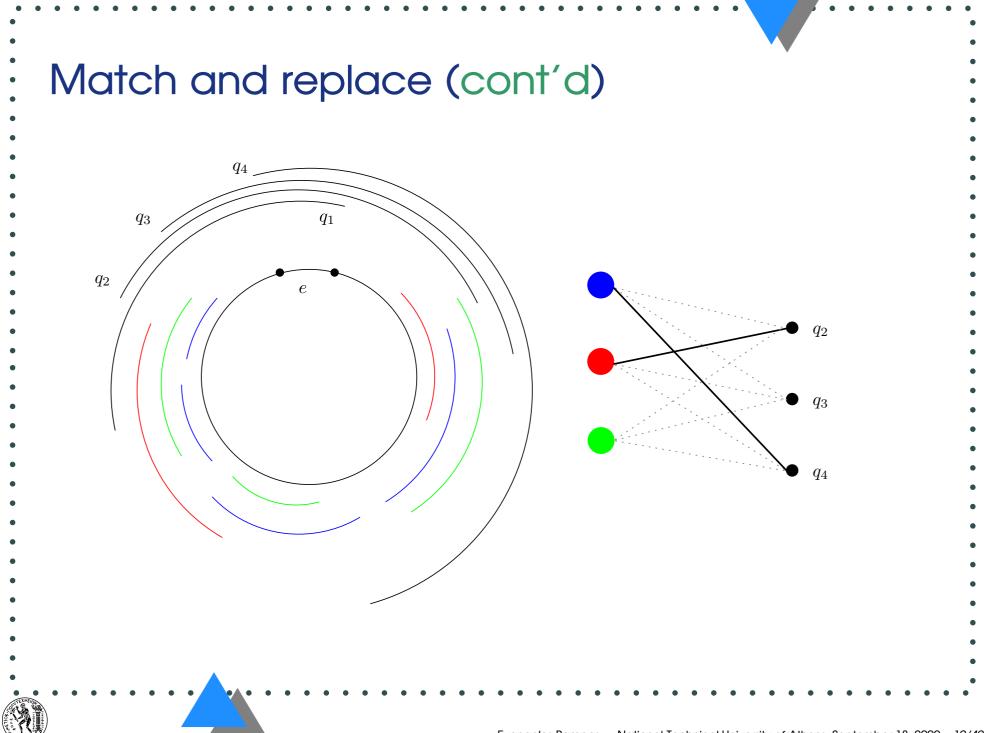
Related work

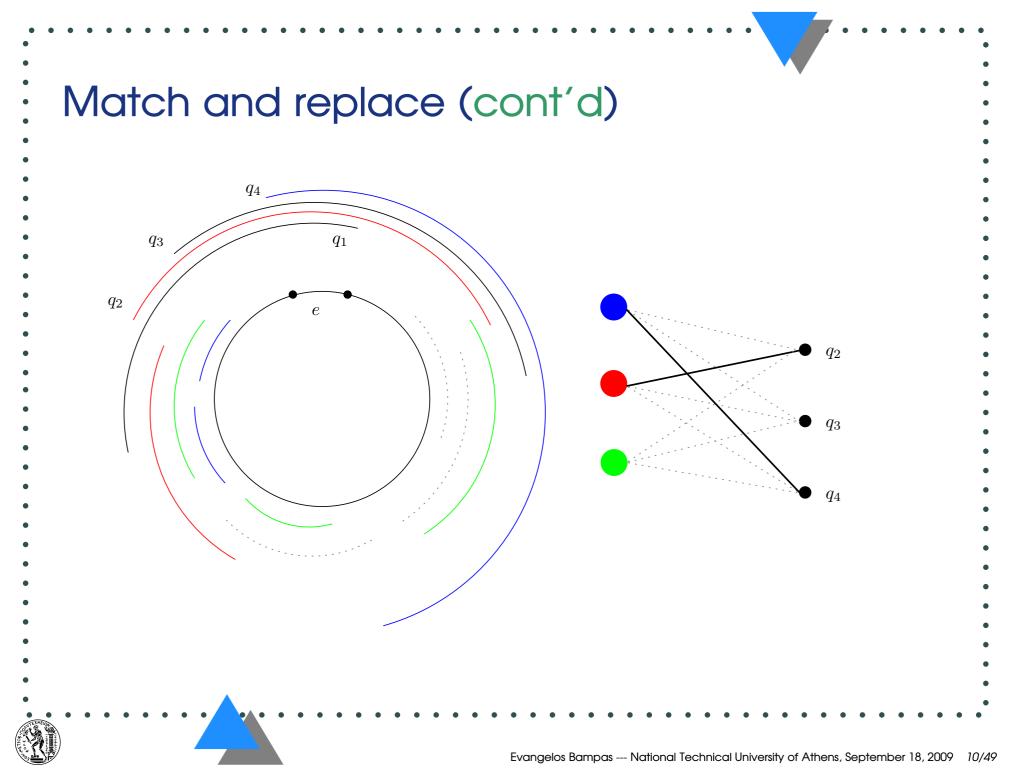
- MaxPR-PC with routing (BG09), $\rho = 1.5$
 - MaxPR-PC with routing and capacity constraints (LLWZ05), ho=2
- Adaptation of iterative algorithm (WL98), ho pprox 1.58

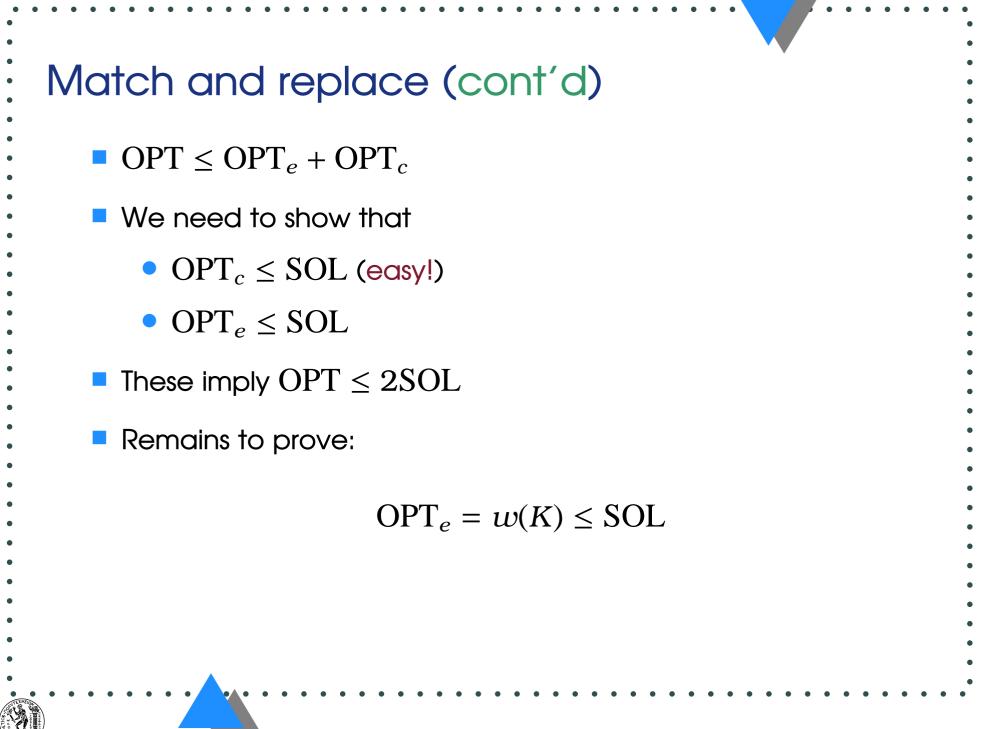
LP + randomized rounding (Car07), w.h.p. $ho pprox 1.49 + \epsilon$



Match and replace 1. pick an edge e_i and partition \mathcal{P} into \mathcal{P}_e and \mathcal{P}_c 2. color $\langle G, \mathcal{P}_c, w, k \rangle$ optimally (chain subinstance) 3. construct a weighted complete bipartite graph H with nodes $\{1, \ldots, k\} \cup K$ (K: set of k heaviest paths in P_e) • $w'(i,q) = w(q) - w([\mathcal{P}_c(i)]^q)$ (gain by picking $q \in \mathcal{P}_e$ instead of $[\mathcal{P}_{c}(i)]^{q}$) 4. compute a maximum weight matching M in H5. for each $(i, q) \in M$ uncolor all paths in $[\mathcal{P}_c(i)]^q$ and color q with i 6.

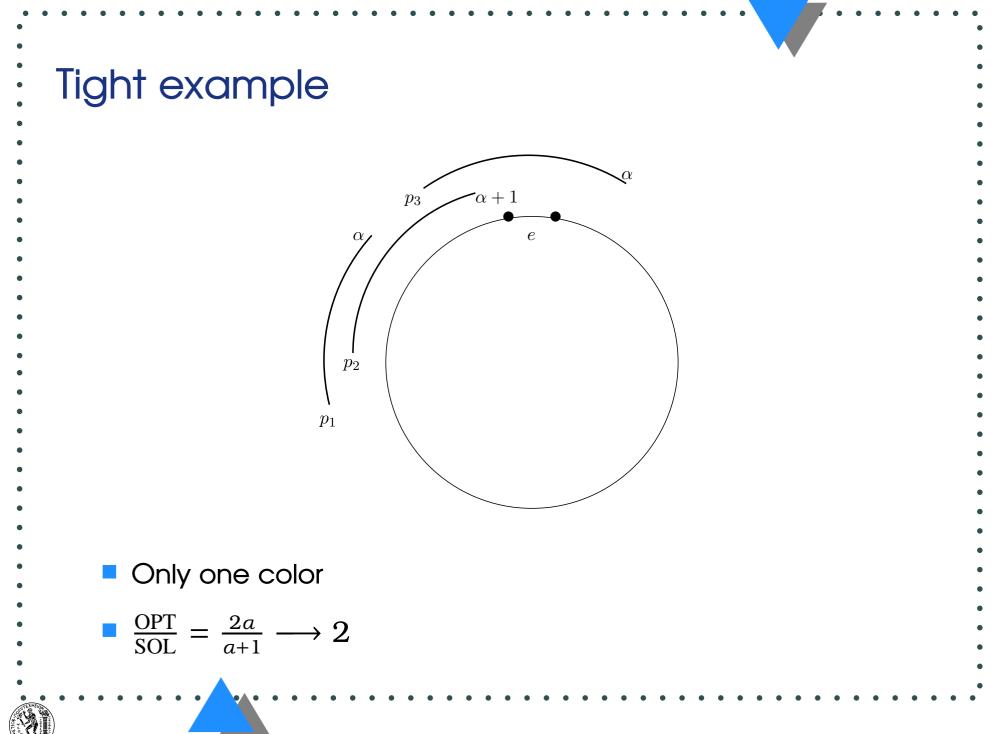




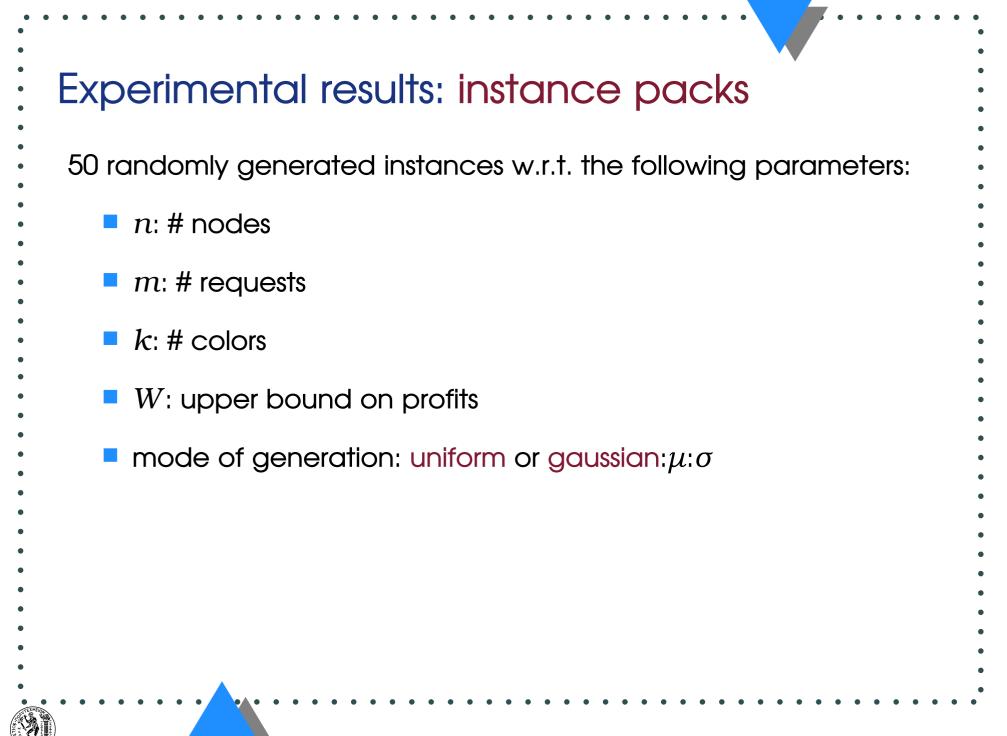


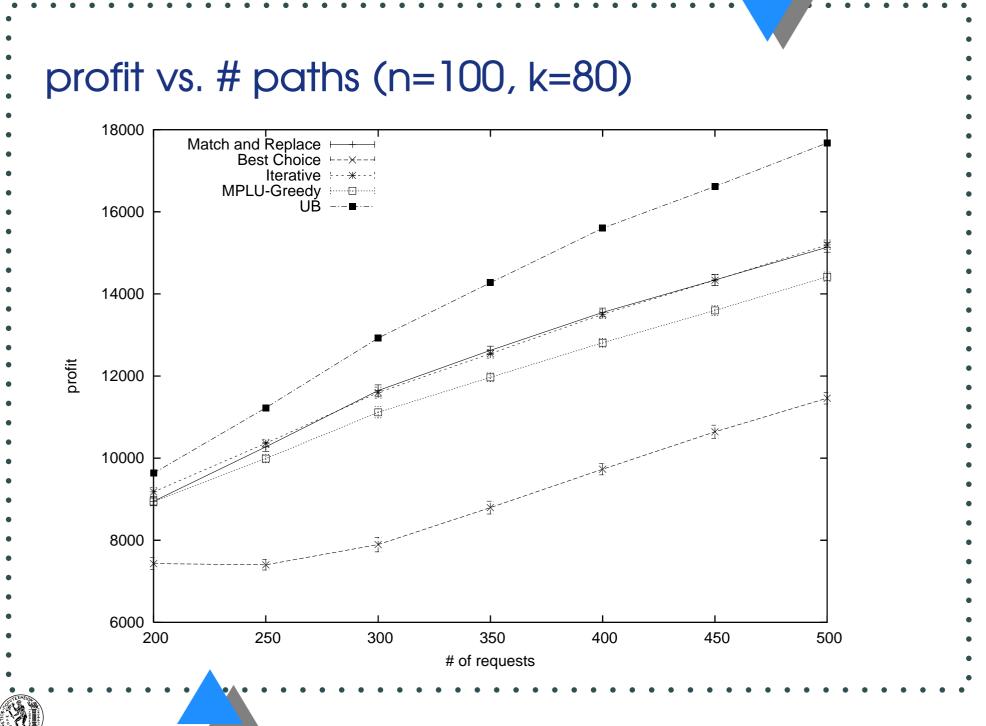
Match and replace (cont'd)
The solution returned has total profit

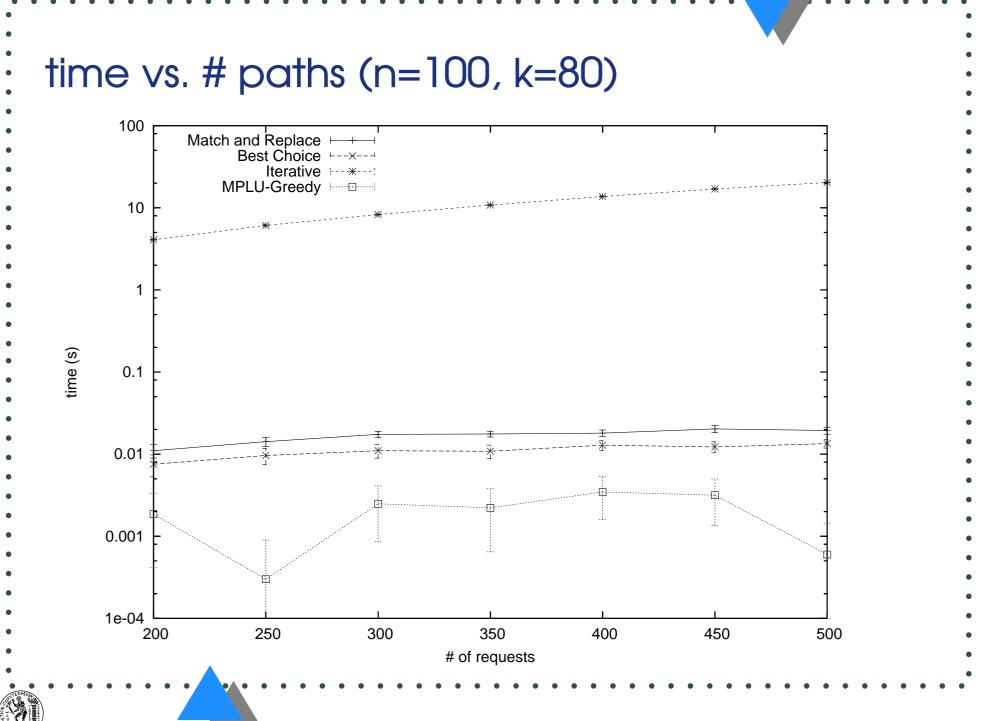
$$SOL = SOL_c + w'(M)$$
,
which can be written as
 $SOL = \sum_{i \text{ not matched}} w(\mathcal{P}_c(i)) + w(K_M) + \sum_{(i,q) \in M} w([\mathcal{P}_c(i)]^{-q})$
 $\geq \sum_{i \text{ not matched}} w(\mathcal{P}_c(i)) - \sum_{q \text{ not matched}} w(q) + w(K) \ge OPT_e$.



1&R $O(m^2(k + \log m))$ 2	lgorithm	Running time	Appr. guarantee
	erative	$O(k^2m^2\log m)$	1.58
Greedy $O(nmk + m \log m)$ non-constant	M&R	$O(m^2(k + \log m))$	2
	Greedy	$O(nmk + m \log m)$	non-constant
"Best" $O(km \log m)$ 2	`Best''	$O(km \log m)$	2







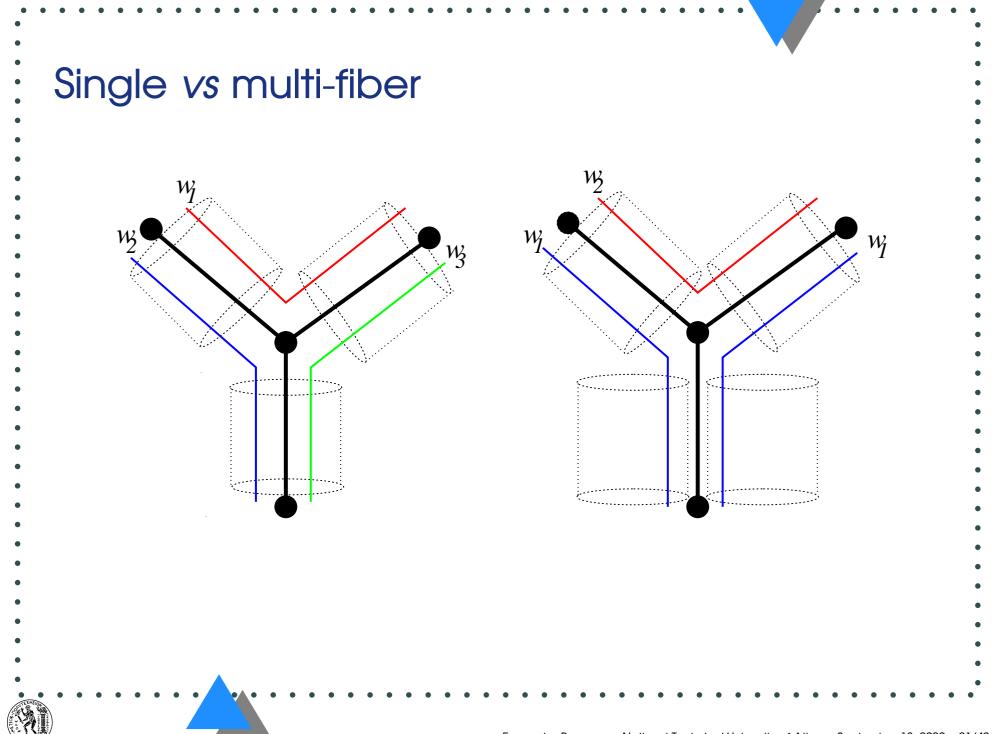
Ranking of algorithms

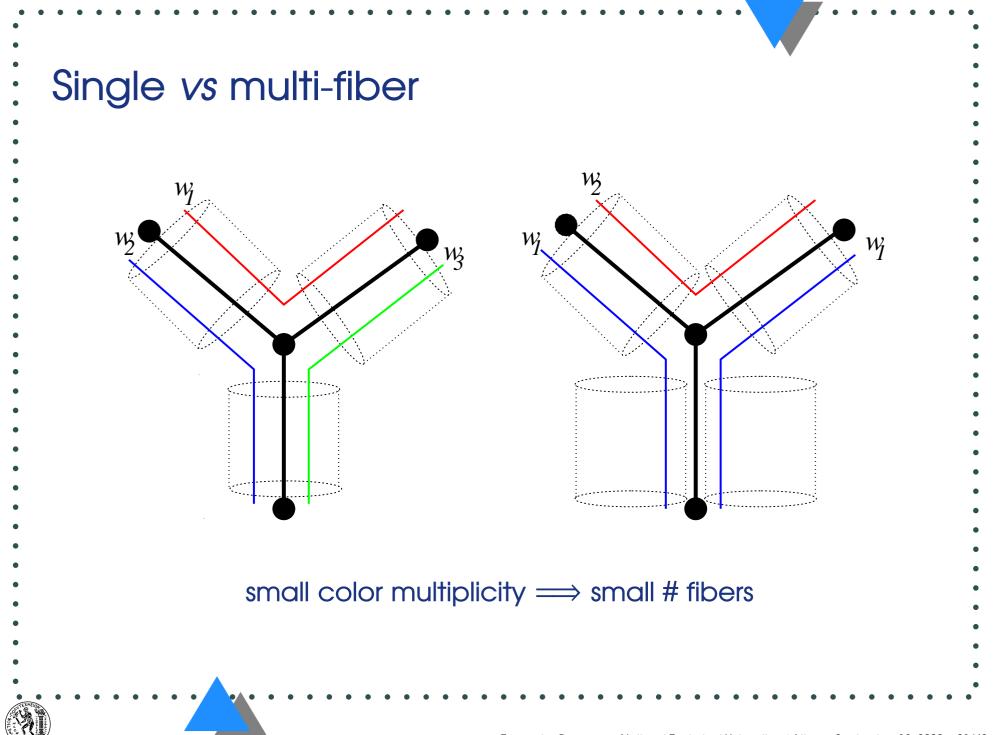
Algorithm	Attained profit	Approximation ratic
Iterative	****	1.58
Match-and-Replace	****	2
Greedy	***	non-constant
Best-Choice	*	2
Algorithm	Time efficiency	Time complexity
Greedy	****	O(nmk)
Match-and-Replace	***	$O(m^2(k + \log m))$
Best-Choice	***	$O(km \log m)$

Cardinality version
 All requests have the same weight
Routed/unrouted requests
Experimental results of the same flavor: iterative is best, closely followed by ``Combine'', simple greedy algorithm performs competently
 B, Pagourtzis, Potika: Maximum request satisfaction in WDM rings: Algorithms and experiments. PCI 2007.
•

.

•••••••••••••••••••••••••••••••••••••••
Outline of presentation
Algorithms for MaxPR-PC in rings and experimental evaluation
Non-cooperative routing and wavelength assignment in multifiber optical networks
A neat application of path coloring to a transportation problem
Conclusions
• • • • • • • • • • • • • • • • • • •
Evangelos Bampas National Technical University of Athens, September 18, 2009 20/49





Non-cooperative model

Large-scale networks: shortage of centralized control

- provide incentives for users to work for the social good
- Social good: minimize fiber multiplicity
- Reasonable policy: charge users according to the maximum fiber multiplicity incurred by their choice of frequency

B, Pagourtzis, Pierrakos, Potika: On a non-cooperative model for wavelength assignment in multifiber optical networks. ISAAC 2008 (LNCS vol. 5369).

Non-cooperative model

Large-scale networks: shortage of centralized control

- provide incentives for users to work for the social good
- Social good: minimize fiber multiplicity
- Reasonable policy: charge users according to the maximum fiber multiplicity incurred by their choice of frequency
- What will be the impact on social welfare if we allow users to act freely and selfishly?

B, Pagourtzis, Pierrakos, Potika: On a non-cooperative model for wavelength assignment in multifiber optical networks. ISAAC 2008 (LNCS vol. 5369).

Problem formulation

Def. PATH MULTICOLORING problem:

input: graph G(V, E), path set \mathcal{P} , # colors k

solution: a coloring $c : \mathcal{P} \to W$, $W = \{a_1, \ldots, a_k\}$

goal: minimize the maximum color multiplicity

 $\mu_{\max} \triangleq \max_{e \in E, a \in W} \mu(e, a)$

Problem formulation

Def. PATH MULTICOLORING problem:

input: graph G(V, E), path set \mathcal{P} , # colors k

solution: a coloring $c : \mathcal{P} \to W$, $W = \{a_1, \ldots, a_k\}$

goal: minimize the maximum color multiplicity

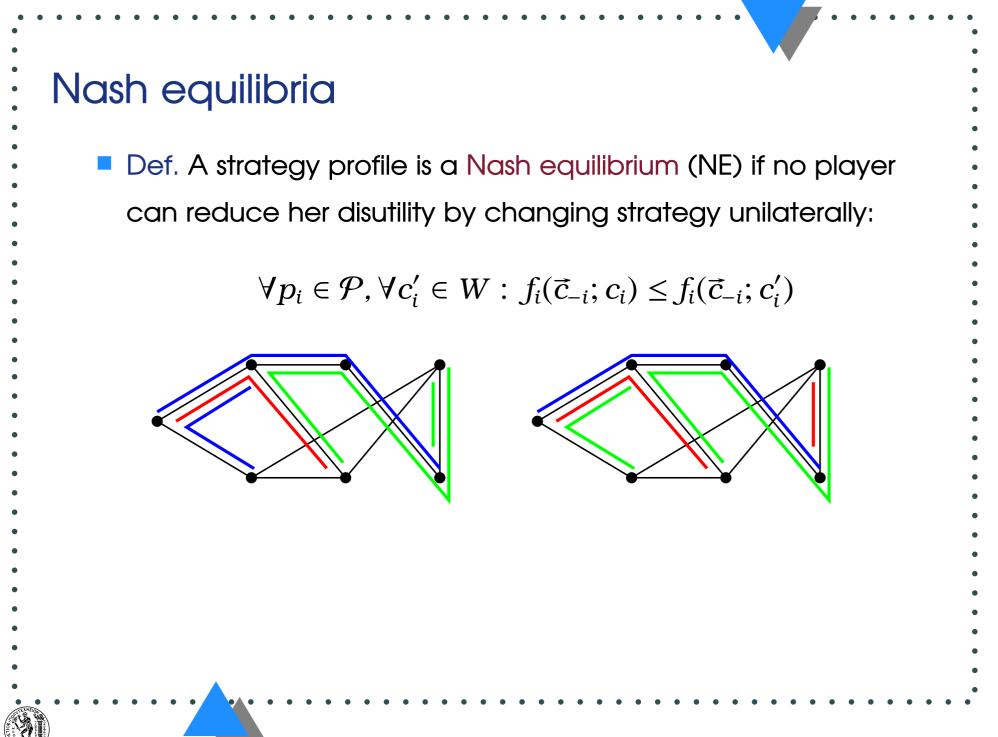
$$\mu_{\max} \triangleq \max_{e \in E, a \in W} \mu(e, a)$$

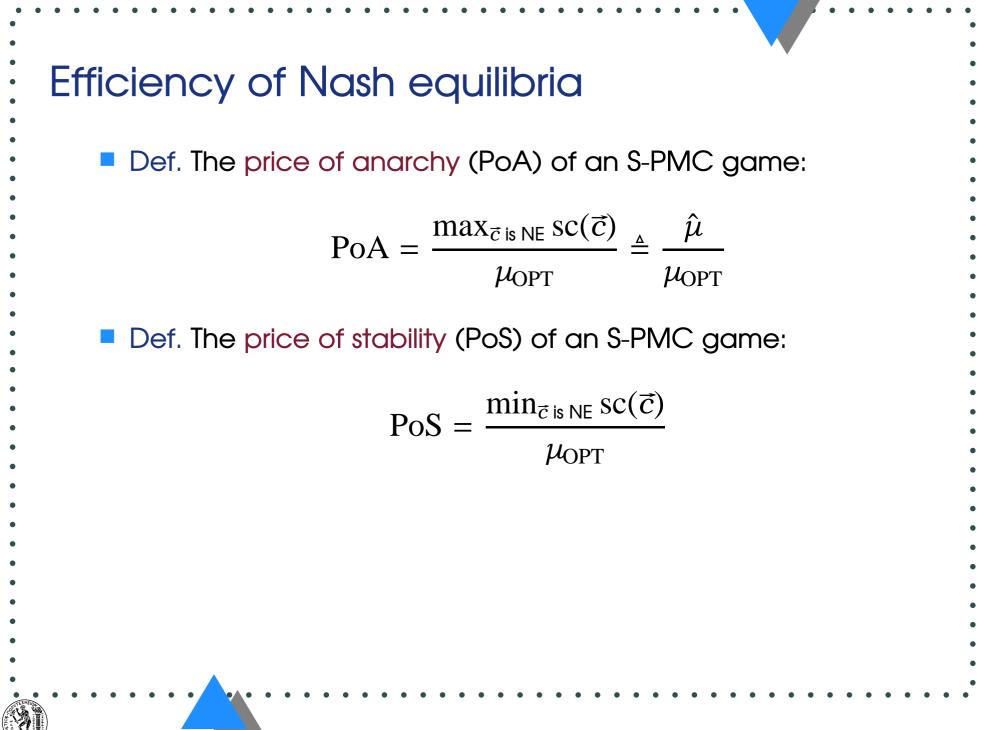
$$L = 3$$

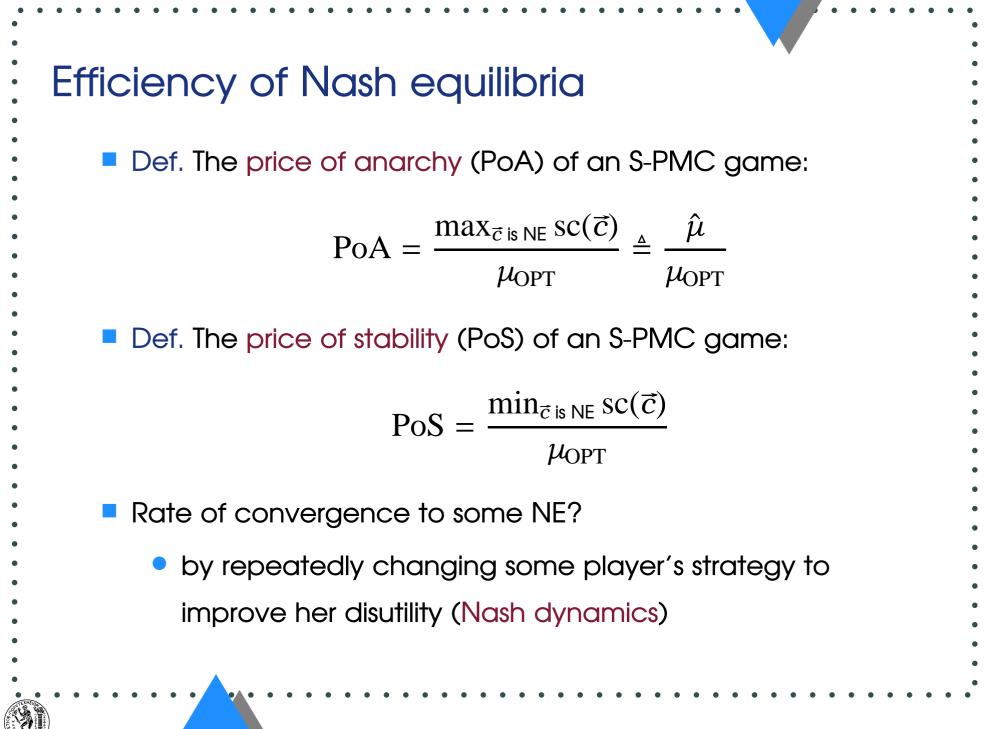
$$\mu_{\text{max}} = 2$$

$$\mu_{\text{OPT}} \ge \left\lceil \frac{L}{k} \right\rceil$$

Came-theoretic formulation
• Def. Given a graph G, path set
$$\mathcal{P}$$
 and k, define the game $\langle G, \mathcal{P}, k \rangle$:
• players: $p_1, \ldots, p_{|\mathcal{P}|} \in \mathcal{P}$
• strategies: each p_i picks a color $c_i \in W$
• strategy profile: a vector $\vec{c} = (c_1, \ldots, c_{|\mathcal{P}|})$
• disutility functions: $f_i(\vec{c}) = \mu(p_i, c_i)$ (maximum multiplicity
of c_i along p_i)
• social cost: $\operatorname{sc}(\vec{c}) \triangleq \mu_{\max} = \max_{e \in E, a \in W} \mu(e, a)$
• Def. S-PMC: the class of all $\langle G, \mathcal{P}, k \rangle$ games





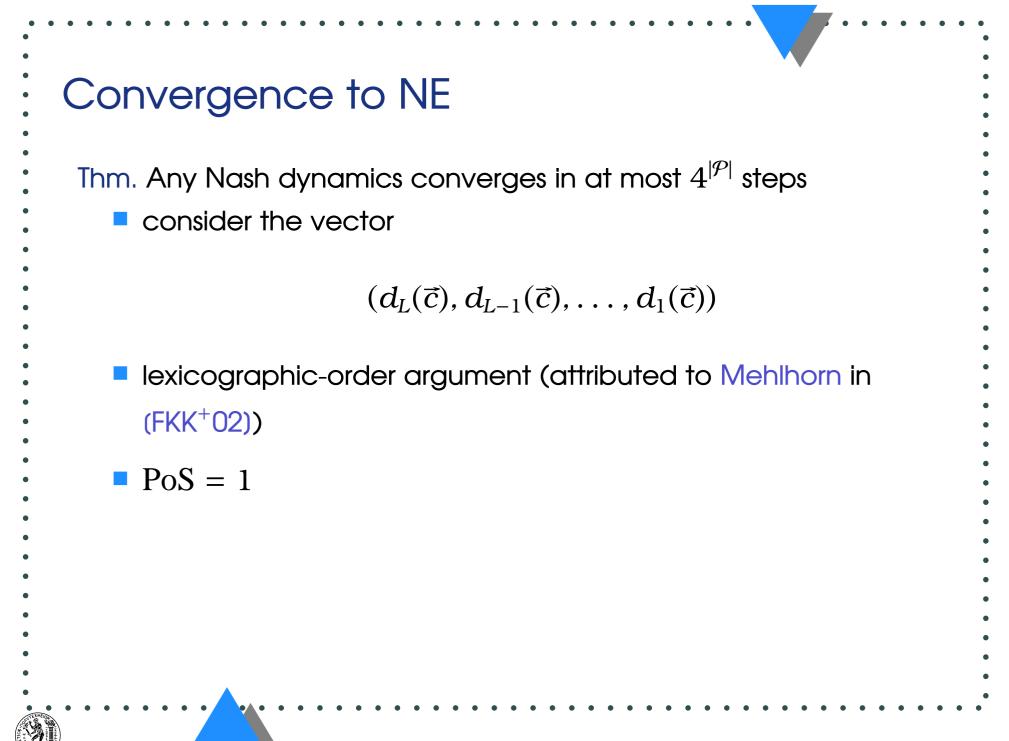


Coming up...

- Convergence of Nash dynamics
- Efficient computation of Nash equilibria
- Upper and lower bounds for the price of anarchy
- The price of anarchy on graphs of degree 2

Related work

- Minimization problem with the $\mu_{\rm max}$ objective (AZ04)
- Minimization problem with the $\sum_{e \in E} \max_{a \in W} \mu(e, a)$ objective (NPZ01)
- Bottleneck network games
 - player cost: MAX of delays along her path
 - players pick among several possible routings (BM06)
 - latency functions on edges (BO06)
 - Congestion games (MS96, Ros73)



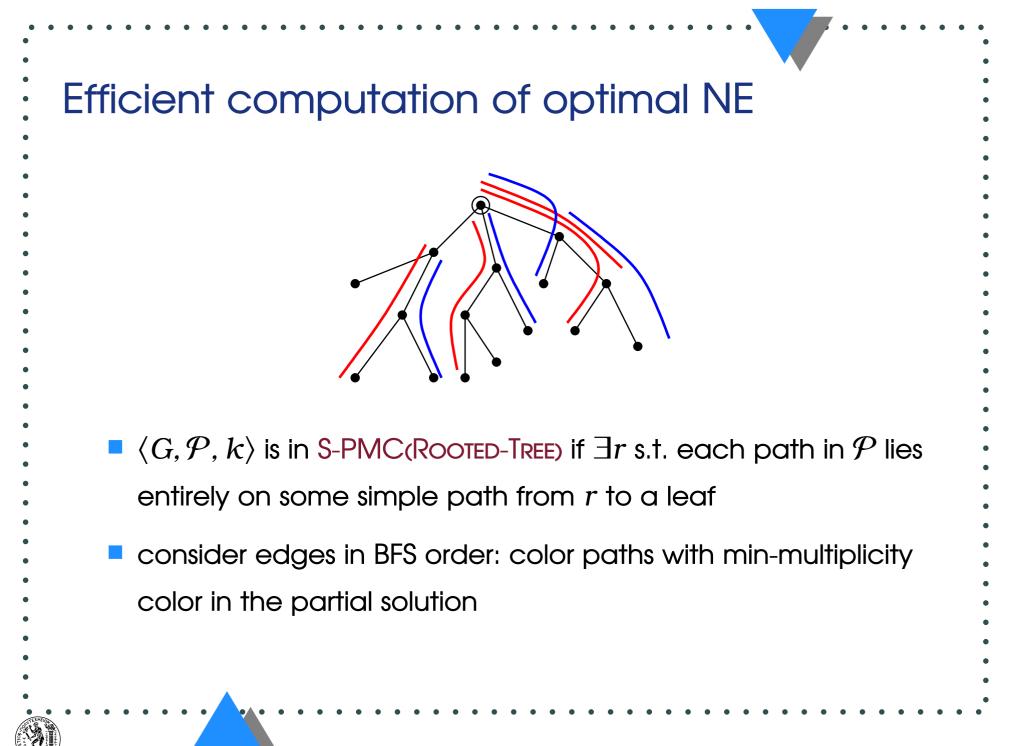
Convergence to NE
Thm. Any Nash dynamics converges in at most
$$4^{|\mathcal{P}|}$$
 steps
• consider the vector
 $(d_L(\vec{c}), d_{L-1}(\vec{c}), \dots, d_1(\vec{c}))$
• lexicographic-order argument (attributed to Mehlhorn in
(FKK⁺02))
• PoS = 1
• how many such vectors?
 $\binom{|\mathcal{P}| + L - 1}{|\mathcal{P}|} \leq 2^{|\mathcal{P}| + L - 1} < 4^{|\mathcal{P}|}$

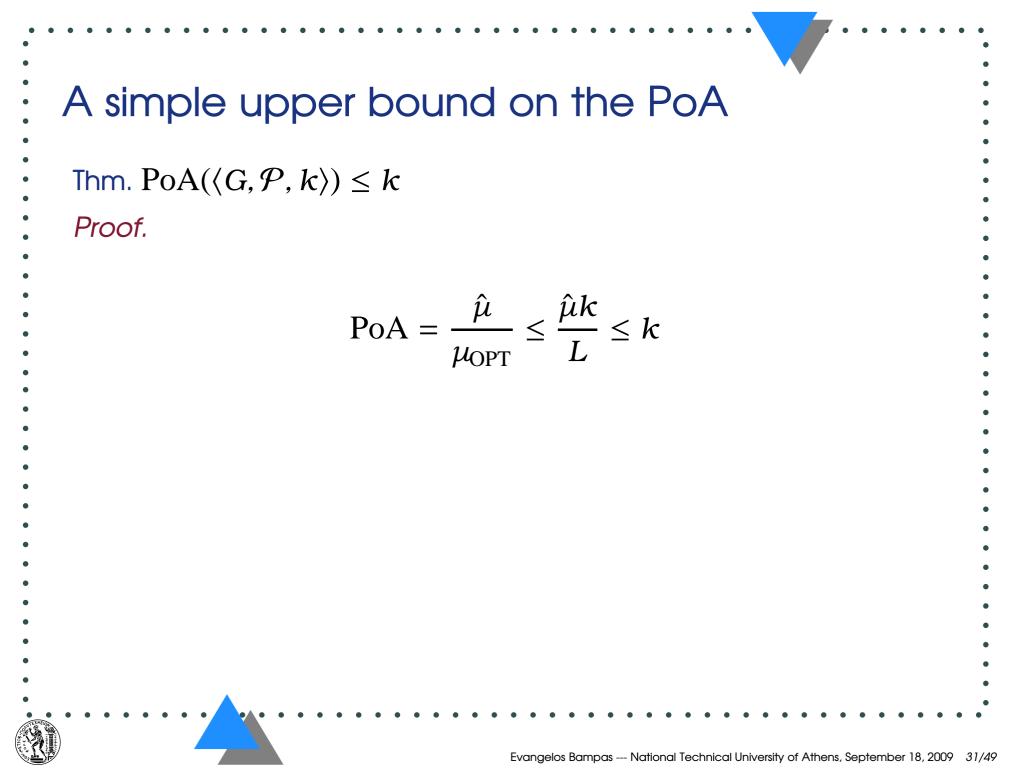
.

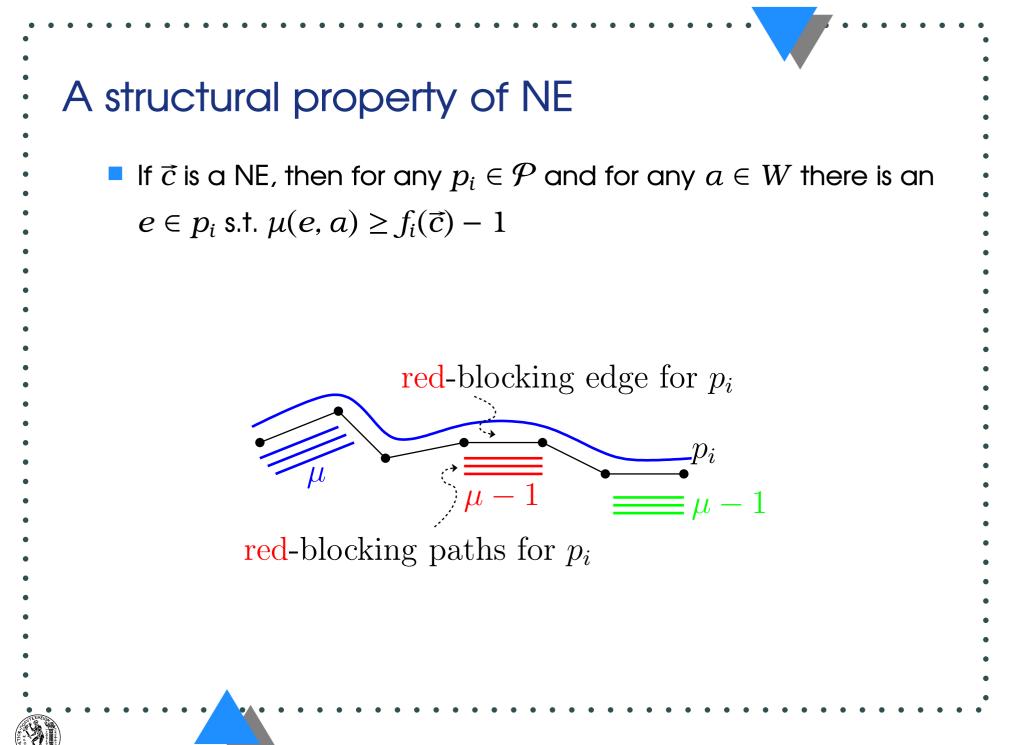
.

. .

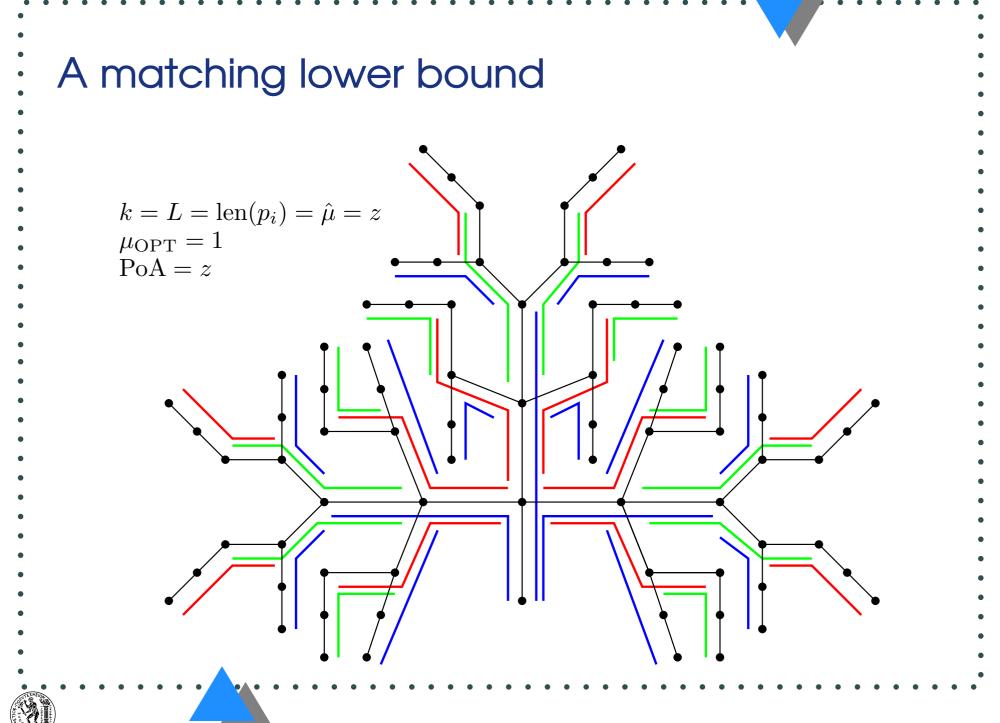
.

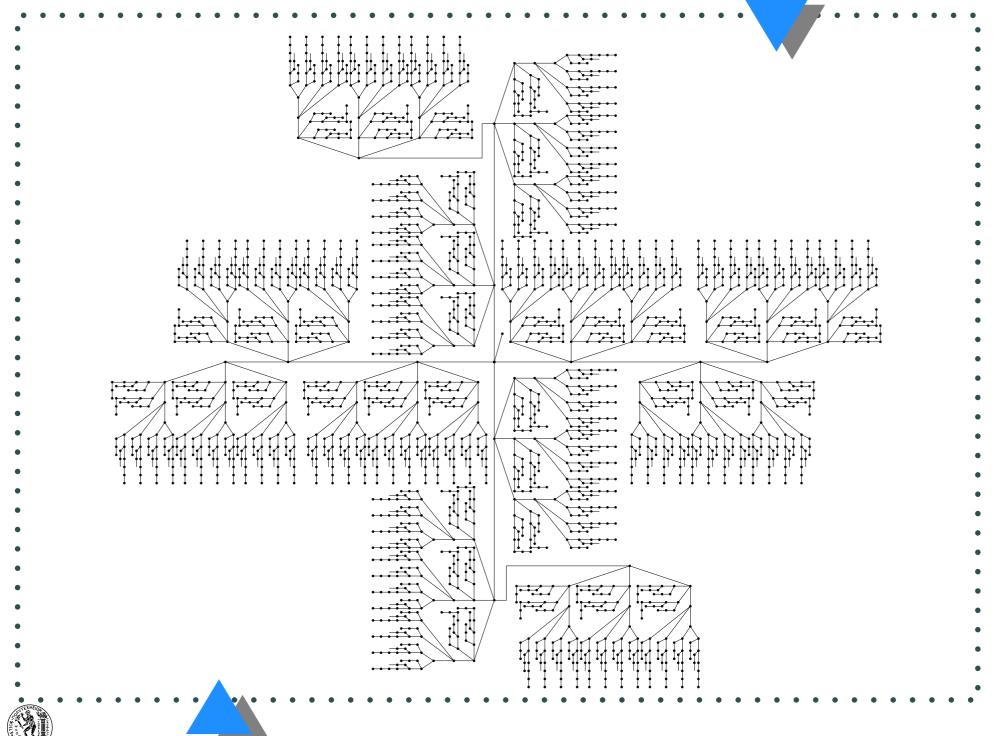




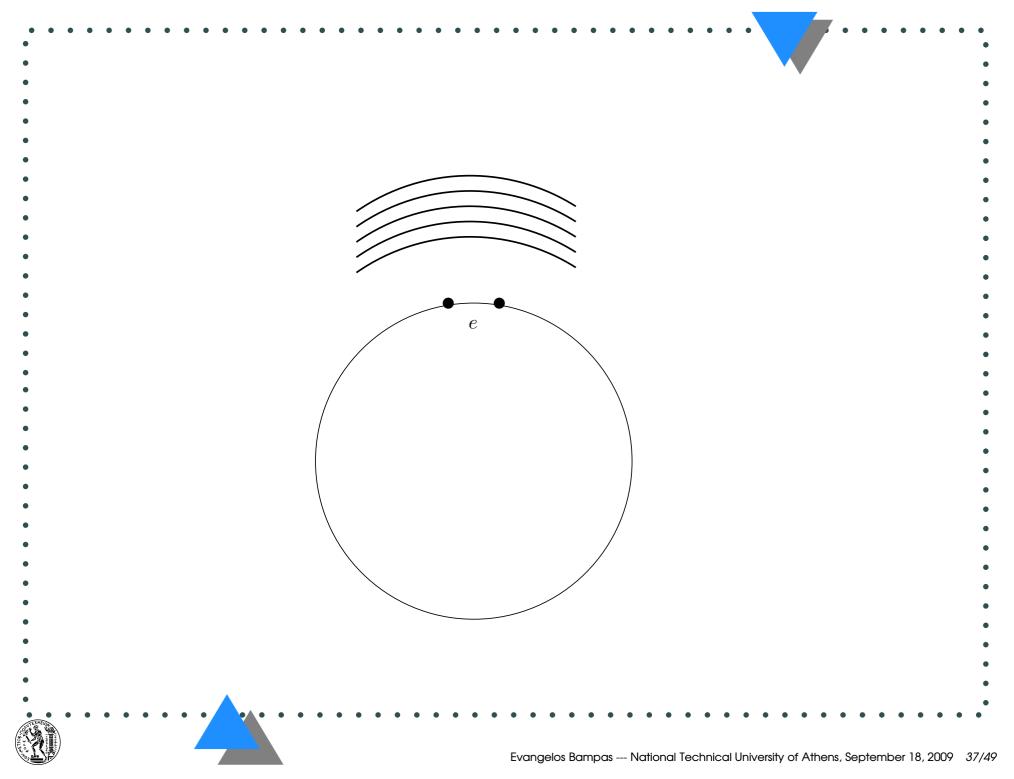


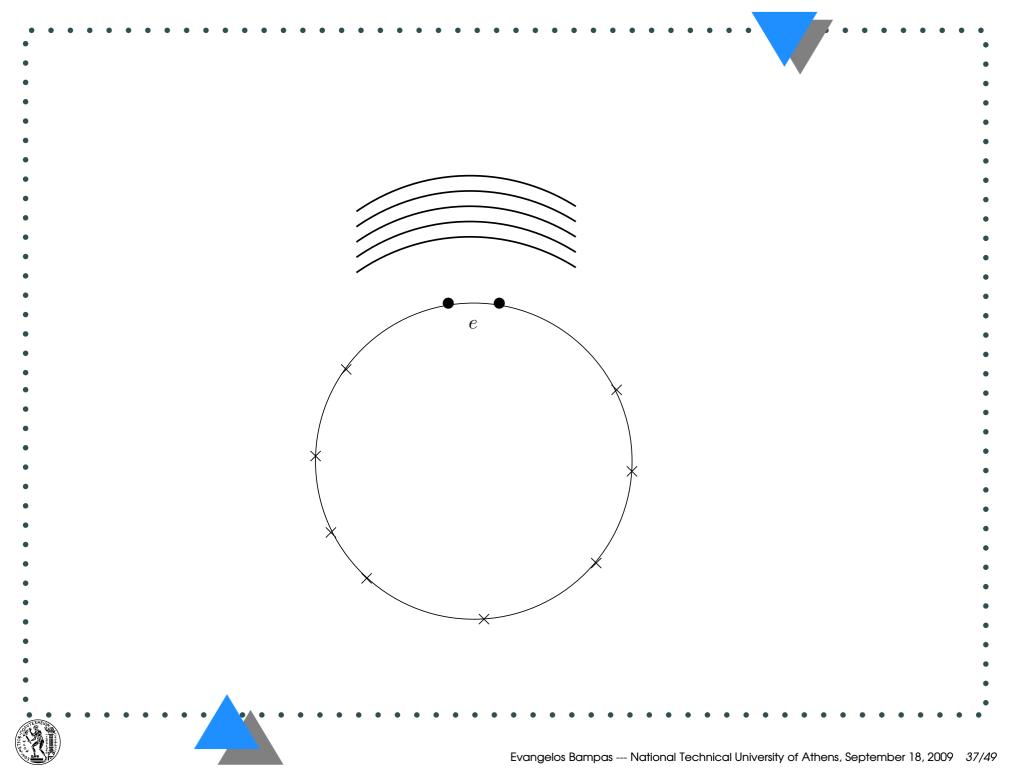
An upper bound on the PoA
Thm. If
$$\vec{c}$$
 is a NE and $sc(\vec{c}) = f_i(\vec{c}) = \hat{\mu}$ then $PoA \le len(p_i)$
Proof.
all k colors are blocked along p_i
some edge of p_i must block at least $\left\lceil \frac{k}{len(p_i)} \right\rceil$ colors
max load is $L \ge 1 + \left\lceil \frac{k}{len(p_i)} \right\rceil (\hat{\mu} - 1)$
 $\mu_{OPT} \ge \left\lceil \frac{L}{k} \right\rceil$
 $PoA = \frac{\hat{\mu}}{\mu_{OPT}} \le \frac{\hat{\mu}}{\left\lceil \frac{1 + \left\lceil \frac{k}{len(p_i)} \right\rceil (\hat{\mu} - 1)}{k} \right\rceil} \le len(p_i)$

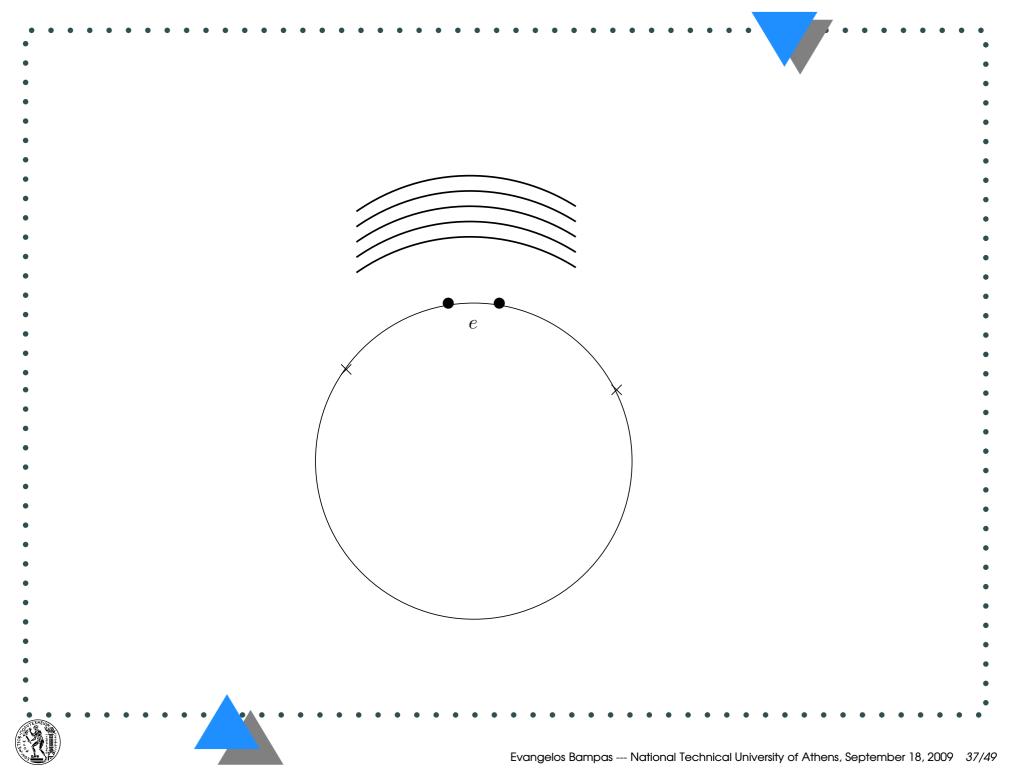


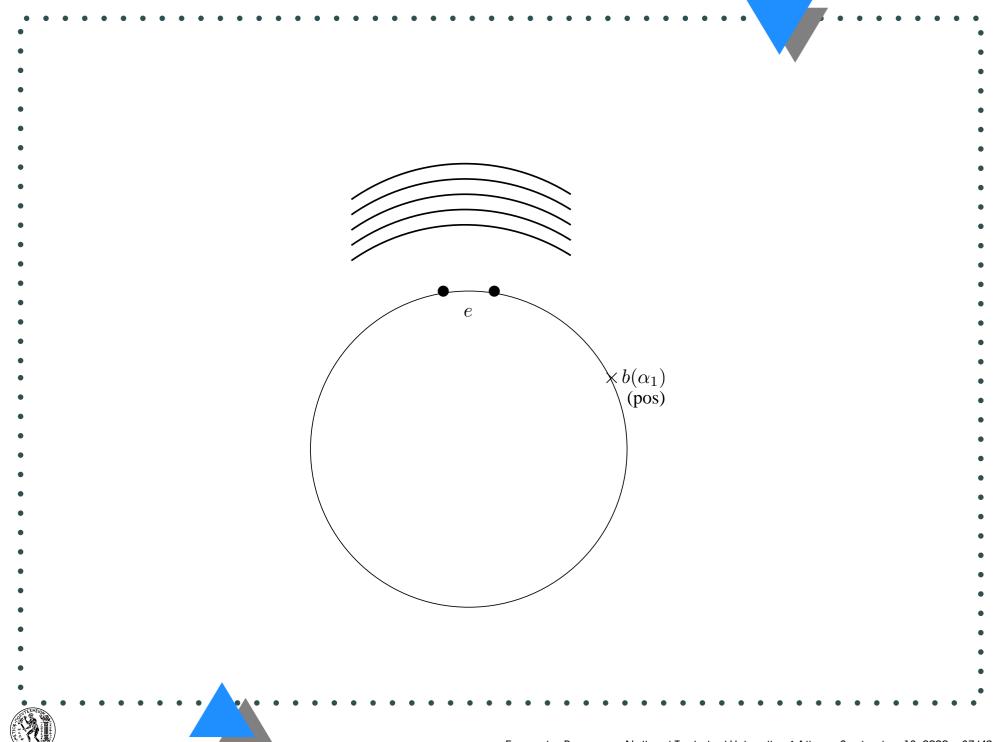


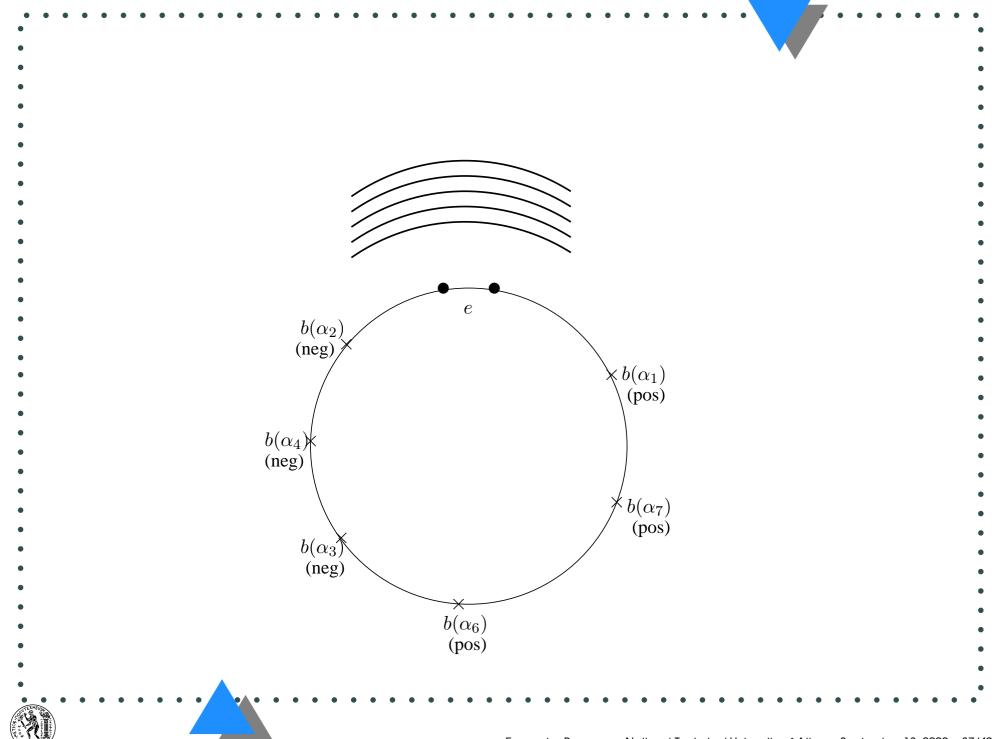
What about graphs with degree 2?
A more involved structural property:
$P(e, a_i)$: the set of paths using edge e that are colored with a_i .
Lem. In any NE of an S-PMC(RING) game, \forall edge e and $\forall a_i$ there is an arc s.t.:
■ $\forall a_j \neq a_i$ the arc contains an edge which is an a_j -blocking edge for at least half of the paths in $P(e, a_i)$, and
• $\forall e' \text{ in the arc, } P(e', a_i) \cap P(e, a_i) \ge \left\lceil \frac{ P(e, a_i) }{2} \right\rceil$

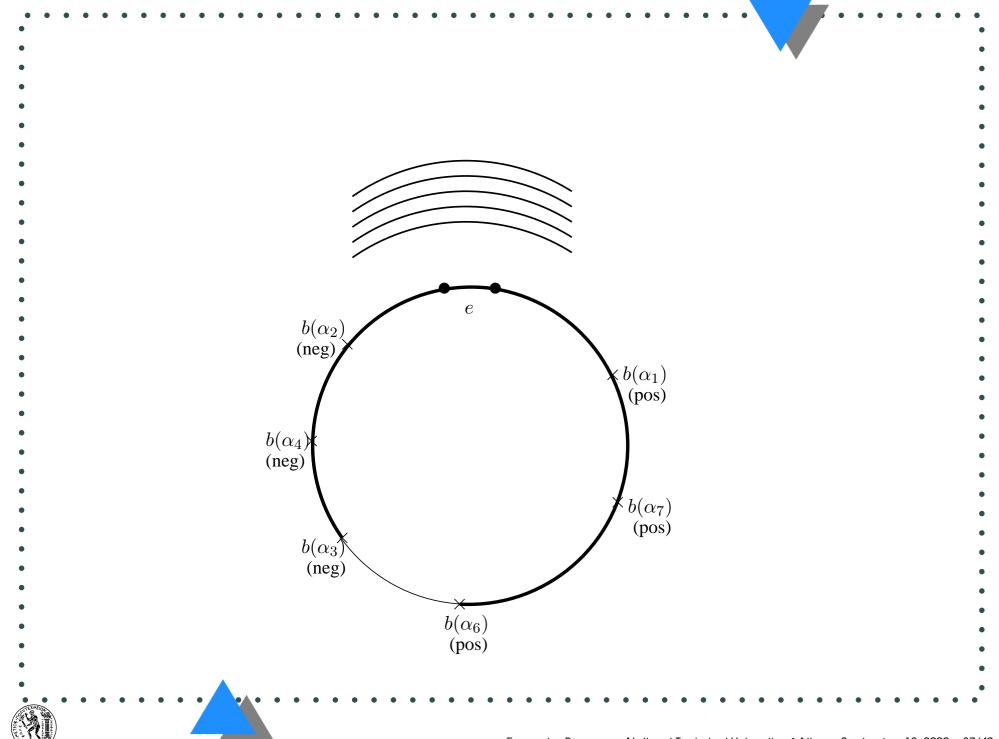




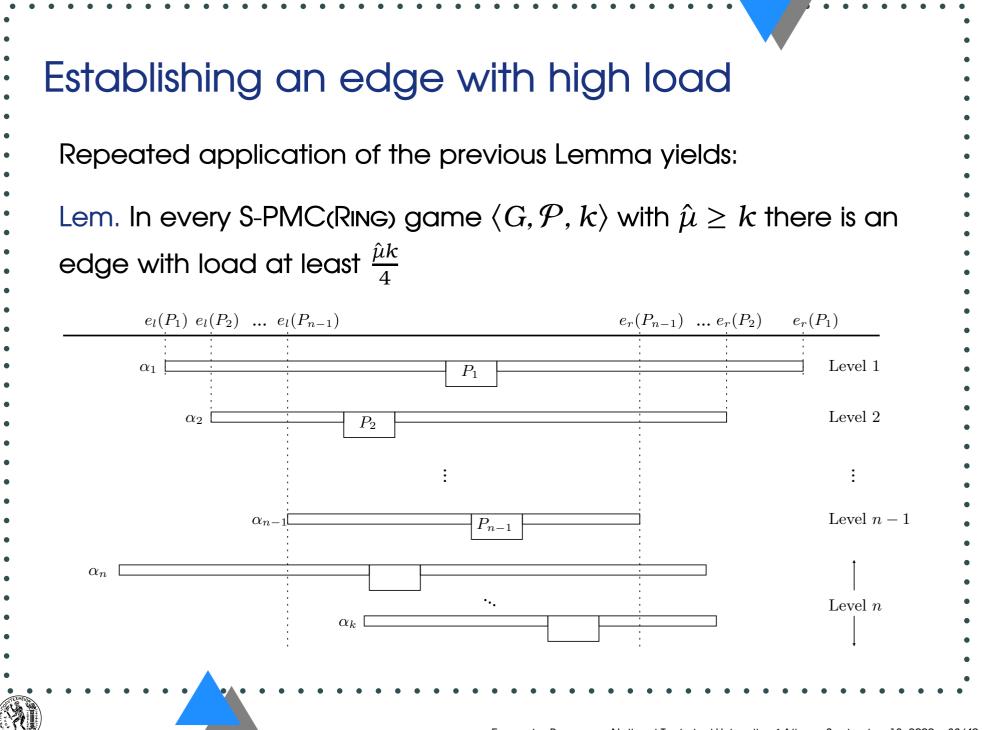








Establishing an edge with high load
Repeated application of the previous Lemma yields:
Lem. In every S-PMC(Ring) game $\langle G, \mathcal{P}, k \rangle$ with $\hat{\mu} \geq k$ there is an edge with load at least $\frac{\hat{\mu}k}{4}$
Evangelos Bampas National Technical University of Athens, September 18, 2009 38/4



Constant PoA for $L = \Omega(k^2)$

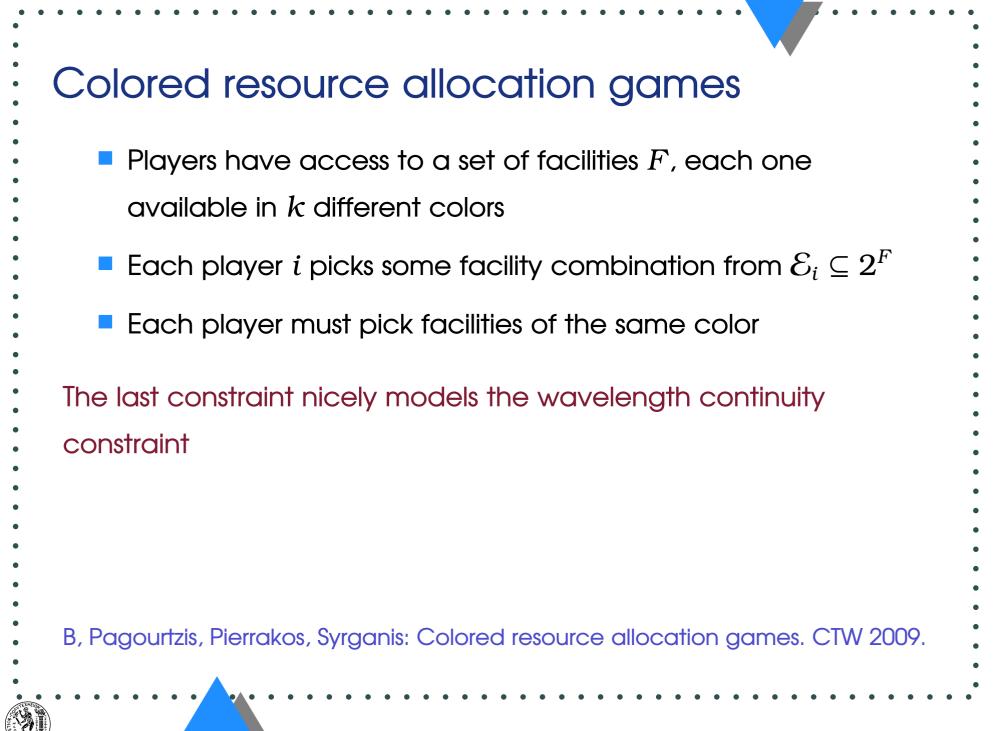
Thm. For any S-PMC(Ring: $L = \Omega(k^2)$) game, PoA = O(1)*Proof.*

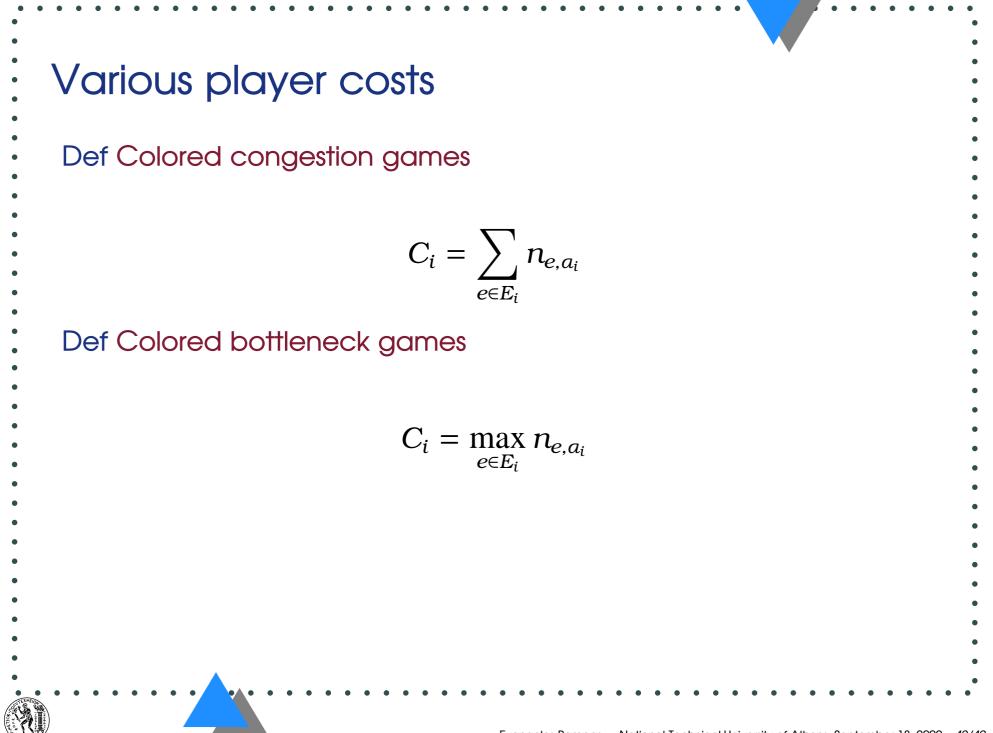
• If
$$\hat{\mu} \ge k$$
, then $L \ge \frac{\hat{\mu}k}{4} \Rightarrow \mu_{\text{OPT}} \ge \frac{\hat{\mu}}{4} \Rightarrow \text{PoA} \le 4$

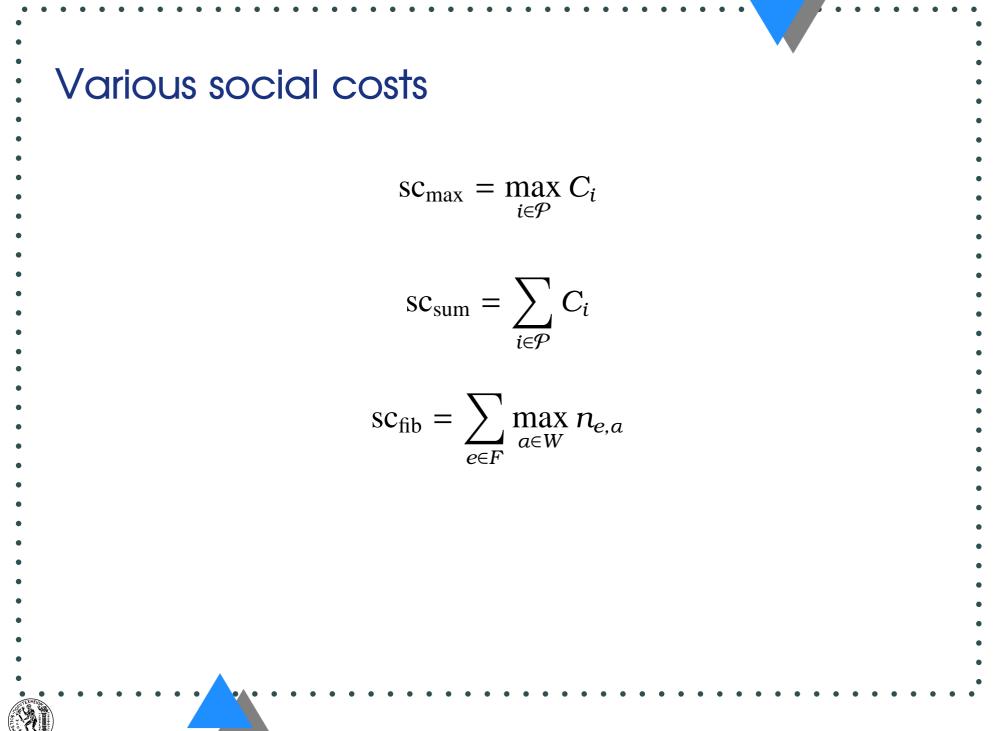
If $\hat{\mu} < k$, then:

$$\text{PoA} = \frac{\hat{\mu}}{\mu_{\text{OPT}}} \le \frac{\hat{\mu}k}{L} < \frac{k^2}{L} = O(1)$$

Unbounded PoA for $L = o(k^2)$ Thm. For any $\varepsilon > 0$ there is an infinite family of S-PMC(CHAIN: $L = \Theta(k^{2-\varepsilon})$) games with $\operatorname{PoA} = \Omega(k^{\frac{\varepsilon}{2}})$.





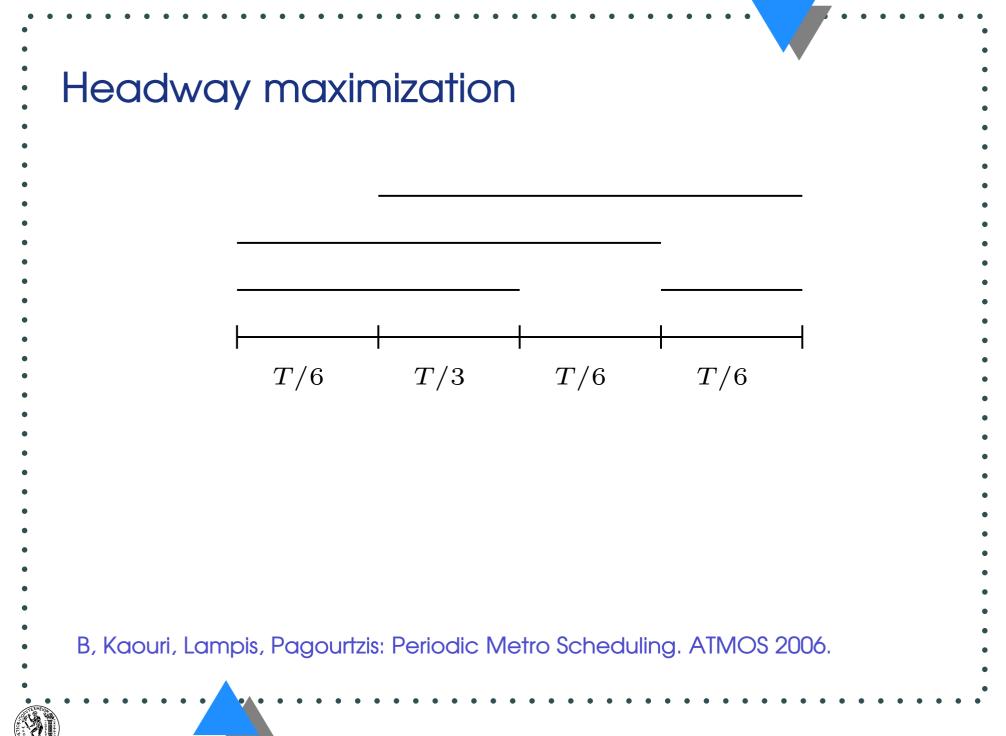


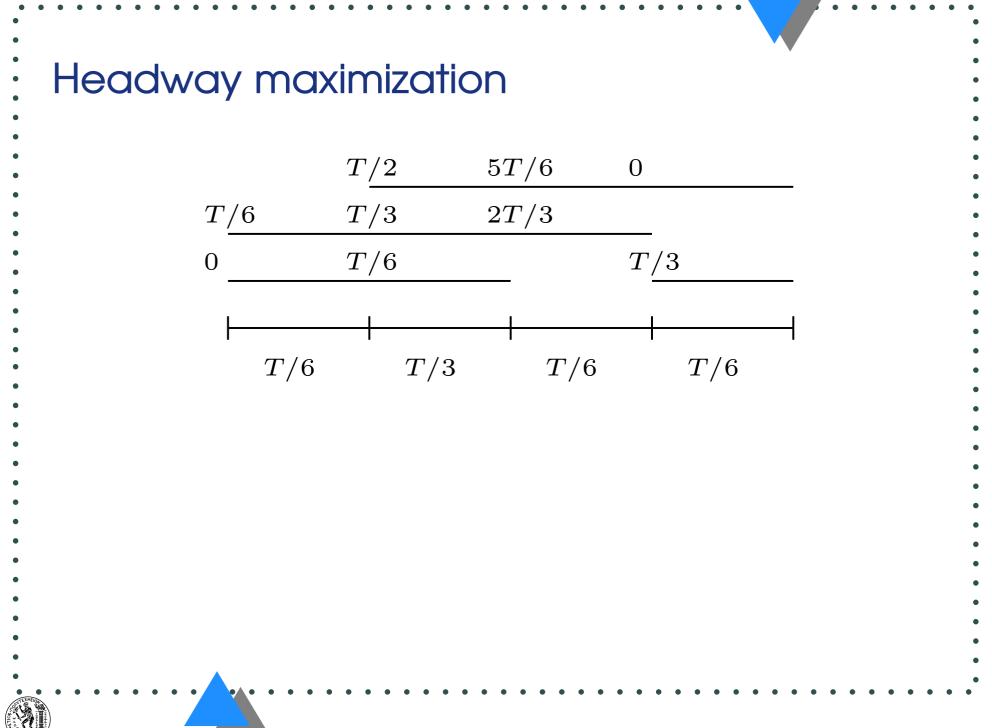
Social cost	Colored Congestion Games	Congestion Games
sc _{max}	$\Theta\left(\sqrt{rac{N}{\kappa}} ight)$	$\Theta\left(\sqrt{N} ight)$
sc _{sum}	$\frac{5}{2}$	$\frac{5}{2}$
sc _{fib}	$\Theta\left(\left.\sqrt{k\cdot F } ight)$	
Social cost	Colored Bottleneck Games	Bottleneck Games
Social cost sc _{max}	Colored Bottleneck Games $\Theta\left(\frac{N}{k}\right)$	Bottleneck Games $\Theta(N)$

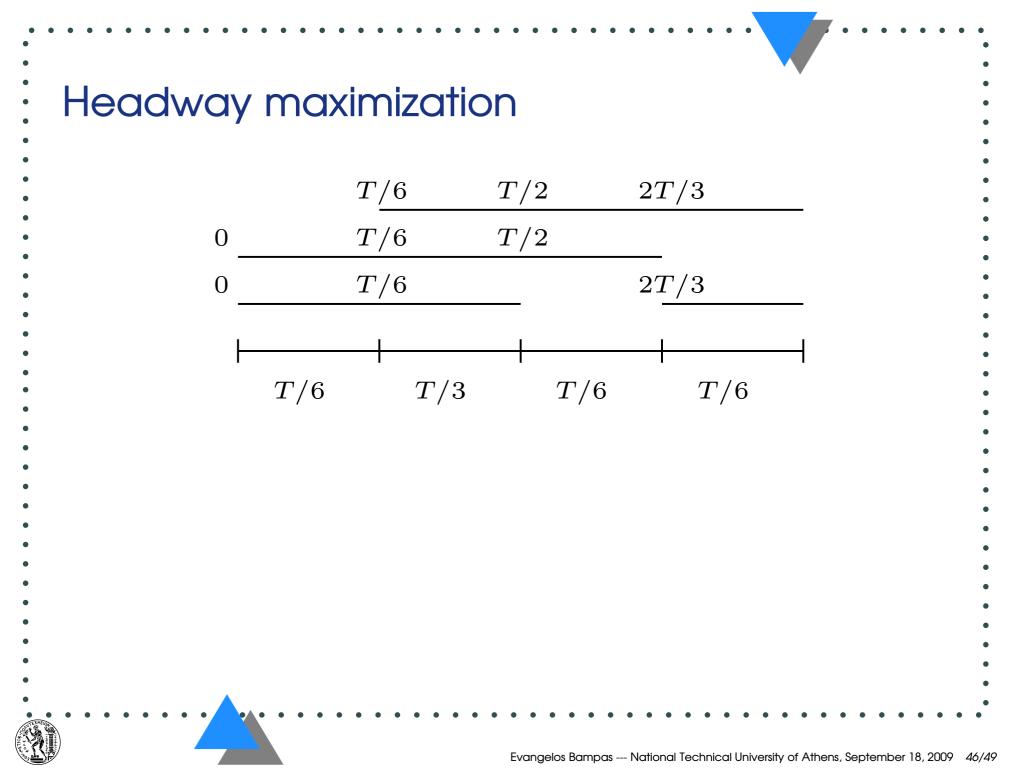
Outline of presentation

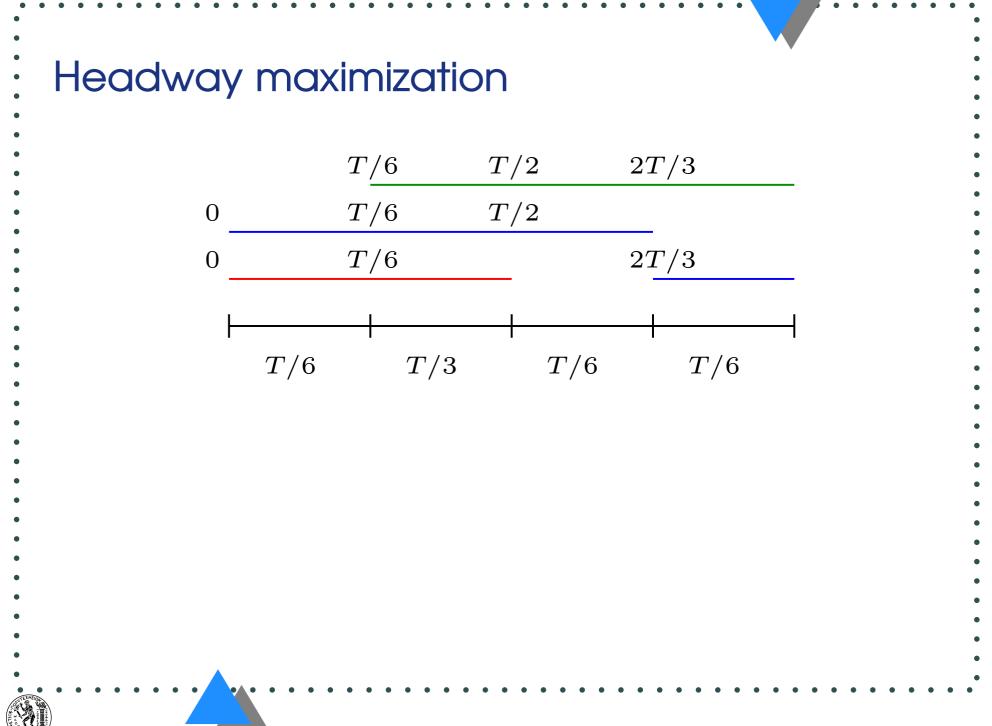
- Algorithms for MaxPR-PC in rings and experimental evaluation
- Non-cooperative routing and wavelength assignment in multifiber optical networks
- A neat application of path coloring to a transportation problem

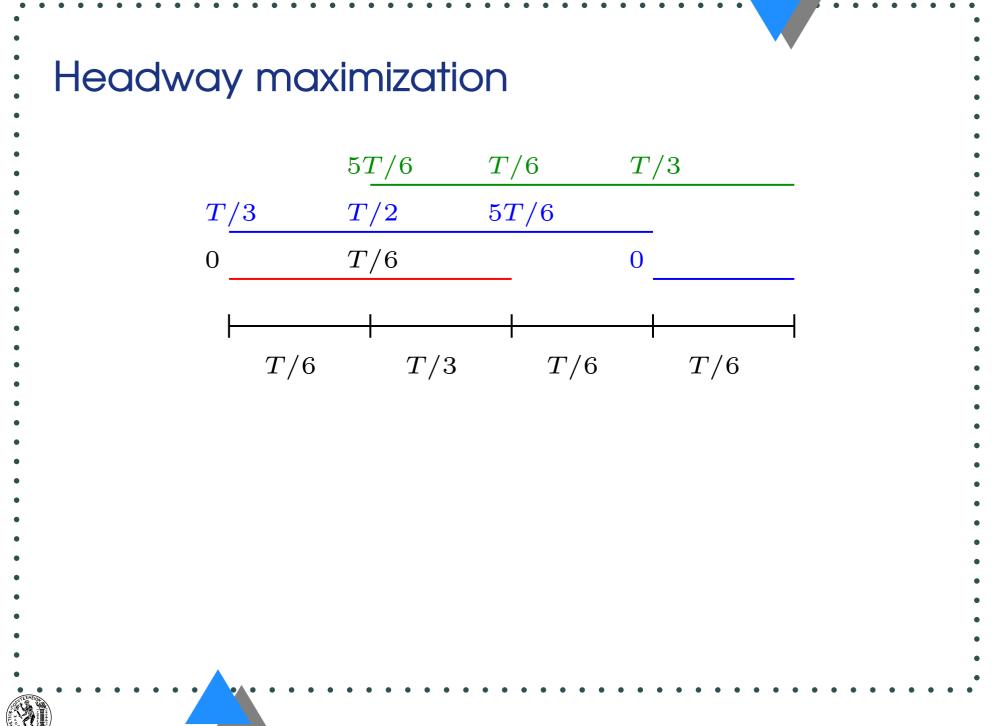
Conclusions











Headway maximization (PMS)

Thm If a PMS instance admits a full collision schedule, then:

- A k-coloring yields a schedule with headway at least $\frac{T}{k}$
- A schedule with headway h yields a $\left\lceil \frac{T}{h} \right\rceil$ -coloring
- Thm If a PMS instance admits a full collision schedule, then a ρ -approximate coloring yields a $\left(\frac{1}{\rho} \cdot \frac{L}{L+1}\right)$ -approximate schedule.

Conclusions

- Match and replace for MaxPR-PC in rings
- Selfish path multicoloring
- A framework for studying non-cooperative resource allocation in multifiber networks
- Applicability of path coloring models to a wide range of problems in networking/scheduling

Other publications

- E. Bampas, L. Gąsieniec, R. Klasing, A. Kosowski, T. Radzik: Robustness of the
- rotor-router mechanism. OPODIS 2009 (to appear, LNCS).
- E. Bampas, L. Gąsieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski: Euler
- tour lock-in problem in the rotor-router model. DISC 2009 (to appear, LNCS vol. 5805).
- E. Bampas, A. Goebel, A. Pagourtzis, A. Tentes: On the connection between
- interval size functions and path counting. TAMC 2009 (LNCS vol. 5532).

Other publications

- E. Bampas, L. Gąsieniec, R. Klasing, A. Kosowski, T. Radzik: Robustness of the
- rotor-router mechanism. OPODIS 2009 (to appear, LNCS).
- E. Bampas, L. Gąsieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski: Euler
- tour lock-in problem in the rotor-router model. DISC 2009 (to appear, LNCS vol. 5805).
- E. Bampas, A. Goebel, A. Pagourtzis, A. Tentes: On the connection between
- interval size functions and path counting. TAMC 2009 (LNCS vol. 5532).

Thank You!